Test 3 Numerical Mathematics 2
 January 26, 2023

Duration: 90 minutes.

In front of the questions one finds the points. The sum of the points plus 1 gives the end mark of this test. Use of a calculator is allowed.

1. Consider the inner product $(f, g)=\int_{-1}^{1}|x| f(x) g(x) d x$.
(a) [2.5] Derive the degree 0,1 and 2 orthogonal polynomials associated with this inner product. Hint: Occurring integrals can be computed more easily when exploiting symmetry.
(b) [1.5] Which integral, related to the above inner product, can be approximated by a Gauss rule based on the orthogonal polynomials of part a? Use the quadratic orthogonal polynomial of the previous part to determine the associated Gauss rule.
(c) [0.5] According to the theory, how does the 'degree of exactness' of a Gauss rule relate to the degree of the orthogonal polynomial used to define the rule. Check explicitly whether the rule derived in b is in accordance with the theory.
2. Consider the function $f(x)$ on $[0,1]$ given by

$$
f(x)= \begin{cases}2 x & \text { for } x \in\left[0, \frac{1}{2}\right] \\ 1 & \text { for } x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

The aim of the exercise is to make a Chebyshev expansion of this function.
(a) [1] Which property holds in general for the error of the polynomial of best approximation to a general continuous function $f(x)$? Make a sketch of the given function $f(x)$ and prove that the best linear approximation on $[0,1]$ is given by $x+1 / 4$. Make also a sketch of the error.
(b) [1] Show that the Chebyshev expansion of $f(x)$ can be written as $C_{n}(x)=$ $\sum_{k=0}^{n} a_{k} T_{k}(-1+2 x)$ where for general f and g the following inner product holds $(f, g)=\int_{0}^{1} 1 / \sqrt{\left.1-(-1+2 x)^{2}\right)} f(x) g(x) d x$. Also give the expression for a_{k}.
(c) [0.8] Using b it can be shown that (you do not have to do the computation) $a_{0}=1-\frac{1}{\pi}$ and $a_{1}=\frac{1}{2}$. Add a sketch of $C_{1}(x)$ to the figures of part a. State the theorem of de la Vallée-Poussin and apply it to derive an as sharp as possible lower bound for the the minimax error? Also give an upper bound based on the sketched error.
(d) $[0.5]$ In this case, will $C_{n}(x)$ converge faster than any positive power of $1 / n$? Explain your answer.
(e) i. [0.5] Show that $\left(f, T_{k}(-1+2 x)\right)=\frac{1}{2} \int_{0}^{\pi} \cos (k \theta) f\left(\frac{1+\cos (\theta)}{2}\right) d \theta$.
ii. [0.2] What will be the result of the previous part if also $f(x)=T_{k}(-1+2 x)$?
iii. [0.5] Show that $a_{0}=1-\frac{1}{\pi}$.

